lunes, 24 de noviembre de 2008

deriva continental

yo creo que pues estaban juntos osea todos eren uno solo pero devido alos movientos de la tierra y temblores y choques de las placas tectonicas se fueron separadnod poco a poco .

La deriva continental Se llama así al fenómeno por el cual las placas que sustentan los continentes se desplazan a lo largo de millones de años de la historia geológica de la Tierra.Este movimiento se debe a que contínuamente sale material del manto por debajo de la corteza oceánica y se crea una fuerza que empuja las zonas ocupadas por los continentes (las placas continentales) y, en consecuencia, les hace cambiar de posición.
La teoría de WegenerEn 1620, el filósofo inglés Francis Bacon se fijó en la similitud que presentan las formas de la costa occidental de África y oriental de Sudamérica, aunque no sugirió que los dos continentes hubiesen estado unidos antes. La propuesta de que los continentes podrían moverse la hizo por primera vez en 1858 Antonio Snider, un estadounidense que vivía en París. En 1915 el meteorólogo alemán Alfred Wegener publicó el libro "El origen de los continentes y océanos", donde desarrollaba esta teoria, por lo que se le suele considerar como autor de la teoría de la deriva continental.Según esta teoría, los continentes de la Tierra habían estado unidos en algún momento en un único ‘supercontinente’ al que llamó Pangea. Más tarde Pangea se había escindido en fragmentos que fueran alejándose lentamente de sus posiciones de partida hasta alcanzar las que ahora ocupan. Al principio, pocos le creyeron.Lo que volvió aceptable esta idea fue un fenómeno llamado paleomagnetismo. Muchas rocas adquieren en el momento de formarse una carga magnética cuya orientación coincide con la que tenía el campo magnético terrestre en el momento de su formación. A finales de la década de 1950 se logró medir este magnetismo antiguo y muy débil (paleomagnetismo) con instrumentos muy sensibles; el análisis de estas mediciones permitió determinar dónde se encontraban los continentes cuando se formaron las rocas. Se demostró así que todos habían estado unidos en algún momento.Por otra parte, desconcierta el hecho de que algunas especies botánicas y animales se encuentren en varios continentes. Es impensable que estas especies puedan ir de un continente a otro a través de los océanos, pero sí podían haberse dispersado fácilmente en el momento en que todas las tierras estaban unidas. Además, en el oeste de África y el este de Sudamérica se encuentran formaciones rocosas del mismo tipo y edad.

sismicidad

La corteza terrestre tiene una superficia desigual que sellama relieve terrestre ; dicho relieve sufre de constantes cambiosde los cuales son evidentes y rapidos, mientras otros son tan lentos que tardan años en completrarse, a estos cambios se le denominan procesos geologicos.

¿Que es la Sismología?
La sismología es una ciencia que estudia los terremotos. Implica la observación de las vibraciones naturales del terreno y de las señales sísmicas generadas de forma artificial, con muchas ramificaciones teóricas y prácticas. Como rama de la geofísica, la sismología ha aportado contribuciones esenciales a la comprensión de la tectónica de placas, la estructura del interior de la Tierra, la predicción de terremotos y es una técnica valiosa en la búsqueda de minerales.
Fenómenos sísmicos
La deformación de los materiales rocosos produce distintos tipos de ondas sísmicas. Un deslizamiento súbito a lo largo de una falla, por ejemplo, produce ondas primarias, longitudinales o de compresión (ondas P) y secundarias, denominadas transversales o de cizalla (ondas S). Los trenes de ondas P, de compresión, establecidos por un empuje (o tiro) en la dirección de propagación de la onda, causan sacudidas de atrás hacia adelante en las formaciones de superficie. La velocidad de propagación de las ondas P depende de la densidad de las rocas. En la propagación de las ondas de cizalla, las partículas se mueven en dirección perpendicular a la dirección de propagación. Las ondas P y las ondas S se transmiten por el interior de la Tierra; las ondas P viajan a velocidades mayores que las ondas S.
Terremotos y ondas sísmicas Los terremotos se producen cuando se libera de forma súbita la presión o tensión almacenada entre secciones de roca de la corteza, causando temblores sobre la superficie terrestre. El lugar en el que las capas de roca se desplazan y disponen unas en relación a otras se llama foco, centro efectivo del terremoto. Justo encima del foco, un segundo lugar llamado epicentro señala el punto superficial donde la sacudida es más intensa. Las ondas de choque se propagan como ondulaciones desde el foco hasta el epicentro decreciendo en intensidad. Los tipos principales de ondas sísmicas son las ondas primarias (ondas P) y las de cizalla (ondas S). Las ondas P desplazan las partículas en la misma dirección que la onda (izquierda). Son las detectadas primero porque son más rápidas que las S (derecha), que provocan vibraciones perpendiculares a la dirección de propagación
Cuando las ondas P y S encuentran un límite, como la discontinuidad de Mohorodovicic (Moho), que yace entre la corteza y el manto de la Tierra, se reflejan, refractan y transmiten en parte y se dividen en algunos otros tipos de ondas que atraviesan la Tierra. Las rocas graníticas corticales muestran velocidades típicas de onda P de 6 km/s, mientras que las rocas subyacentes máficas y ultramáficas (rocas oscuras con contenidos crecientes de magnesio y hierro) presentan velocidades de 7 y 8 km/s respectivamente.
Además de las ondas P y S -ondas internas o de volumen-, hay dos tipos de ondas superficiales: las ondas de Love, llamadas así por el geofísico británico Augustus E. H. Love, y las ondas de Rayleigh, que reciben este nombre en honor al físico británico. Las ondas superficiales sólo se propagan por la superficie terrestre y son las causantes de los mayores destrozos. Las ondas superficiales son más lentas que las ondas internas.
Medición de sismos:
La escala sismológica de Richter, también conocida por su nombre más adecuado de escala de magnitud local (ML), es una escala logarítmica arbitraria que asigna un número para cuantificar el tamaño de un terremoto, nombrada así en honor a Charles Richter (1900-1985), sismólogo nacido en Hamilton, Ohio, Estados Unidos.
Richter desarrolló su escala en la década de 1930. Calculó que la magnitud de un terremoto o sismo puede ser medida conociendo el tiempo transcurrido entre la aparición de las ondas P y las ondas S, y la amplitud de éstas. Las primeras hacen vibrar el medio en la misma dirección que la del desplazamiento de la onda, son ondas de compresión -y dilatación-. De velocidad de propagación muy rápida -de 5 a 11 km/s-, son las primeras en aparecer en un sismograma. A continuación llegan las ondas S, ondas de cizalla, que hacen vibrar el medio en sentido perpendicular a la dirección de su desplazamiento. Basándose en estos hechos, Richter desarrolló la siguiente ecuación:
donde A es la amplitud de las ondas S en milímetros, medida directamente en el sismograma, y Δt el tiempo en segundos desde el inicio de las ondas P al de las ondas S, asignando una magnitud arbitraria pero constante a terremotos que liberan la misma cantidad de energía. El uso del logaritmo en la escala es para reflejar la energía que se desprende en un terremoto. El logaritmo incorporado a la escala hace que los valores asignados a cada nivel aumenten de forma exponencial, y no de forma lineal.
La escala de magnitud local y solo aplicable a los terremotos originados en la falla de San Andrés, fue desarrollada por Charles Richter con colaboración de Beno Gutenberg en 1935, ambos investigadores del Instituto de Tecnología de California, con el propósito original de separar aquel gran número de terremotos pequeños de los menos frecuentes terremotos mayores observados en California en su tiempo. La escala fue desarrollada para estudiar únicamente aquellos sismos ocurridos dentro de un área particular del sur de California cuyos sismogramas hayan sido recogidos exclusivamente por un sismómetro de torsión Wood-Anderson. Richter reportó inicialmente valores con una precisión de un cuarto de unidad, sin embargo, usó números decimales más tarde.
Richter se inspiró en la escala de magnitud estelar, técnica usada en la astronomía para describir el brillo de las estrellas y de otros objetos celestiales. Richter arbitrariamente escogió un evento de magnitud 0 para describir un terremoto que produciría un desplazamiento horizontal máximo de 1 μm en un sismograma trazado por un sismómetro de torsión Wood-Anderson localizado a 100 km de distancia del epicentro. Esta decisión tuvo la intención de prevenir la asignación de magnitudes negativas. Sin embargo, la escala de Richter no tenía límite máximo o mínimo, y actualmente habiendo sismógrafos modernos más sensibles, éstos comúnmente detectan movimientos con magnitudes negativas.
Debido a las limitaciones del sismómetro de torsión Wood-Anderson usado para desarrollar la escala, la original magnitud ML no puede ser calculada para eventos mayores a 6,8. Varios investigadores propusieron extensiones a la escala de magnitud local, siendo las más populares la magnitud de ondas superficiales MS y la magnitud de ondas de cuerpo Mb.
La escala de Richter es la escala utilizada para evaluar y comparar la intensidad de los sismos. Esta escala mide la energía del terremoto en el hipocentro o foco y sigue una escala de intensidades que aumenta exponencialmente de un valor al siguiente.
Problemas con la escala sismológica de Richter
El mayor problema con la magnitud local ML o de Richter radica en su ineficacia para relacionarle a las características físicas del origen del terremoto. Además, existe un efecto de saturación para magnitudes cercanas a 8,3-8,5, debido a la ley de escalamiento del espectro sísmico que provoca que los métodos tradicionales de magnitudes (i.e. ML, Mb, MS) produzcan estimaciones de magnitudes similares para eventos que claramente son de tamaño diferente. A inicios del siglo XXI, la mayoría de los sismólogos consideran obsoletas las escalas de magnitudes tradicionales, siendo éstas reemplazadas por una medida físicamente más significativa llamada momento sísmico, el cual es más adecuado para relacionar los parámetros físicos, como la dimensión de la ruptura sísmica y la energía liberada por el terremoto. En 1979, los sismólogos Tom Hanks y Hiroo Kanamori, investigadores del Instituto de Tecnología de California, propusieron la escala sismológica de magnitud de momento (MW), la cual provee una forma de expresar momentos sísmicos que puede ser relacionada aproximadamente a las medidas tradicionales de magnitudes sísmicas.

DITOSFISMO: Proceso geologico que abarca todos los movimientos de las rocas formantes de la corteza terresre.

placas tectonicas y vulcanismo















placas tectonicas y vulcanismo


vulcanismo

Los antiguos griegos llamavan vulcano a los rios de fuego, nombre del cual deriva la palabra vulcanismo.

El Vulcanismo es un fenómeno que consiste en la salida desde el interior de la Tierra hacia el exterior de rocas fundidas o magma, acompañada de gases. El magma y los gases rompen las zonas más débiles de la litosfera para llegar a la superficie. Estas debilidades se encuentran sobre todo a lo largo de los límites entre placas tectónicas, que es donde se concentra la mayor parte del vulcanismo. Cuando el magma y los gases alcanzan la superficie a través de las fisuras de la corteza, forman los volcanes, de los que hay varios tipos. La imagen clásica del volcán, es una estructura cónica con un orificio (cráter) en la cima del que emiten cenizas, vapor, gases, roca fundida y fragmentos sólidos. Pero esta clase de volcanes suponen menos del 1% de toda la actividad volcánica terrestre.

Al menos el 80% del vulcanismo se concentra en las largas fisuras verticales de la corteza terrestre. Esto ocurre sobre todo en los bordes constructivos de las placas en que está dividida la litosfera. Estos bordes están marcados por dorsales oceánicas en las que se crea nueva corteza a medida que las placas se separan. De hecho, es el magma ascendente enfriado el que forma el nuevo fondo oceánico. Por tanto, la mayor parte de la actividad volcánica permanece oculta bajo los mares.
Vulcanismos de superficie
Este tiene menos volumen de magma que el submarino, pero se conoce mucho mejor porque es visible y afecta directamente al ser humano. La actividad volcánica oscila desde las explosiones violentas hasta la suave extrusión de magma, que se llama lava al caer en la superficie terrestre. Tipos de volcanes:
Volcanes de fisura: Se asocia con dorsales oceánicas, pero también ocurre en tierra. Estos volcanes emiten mucho material muy fluido; las erupciones sucesivas se superponen hasta formar grandes llanuras. Este vulcanismo, cuando ocurre en tierra, se asocia con las grandes llanuras de todos los continentes. Este tipo de volcanes han formado muchas mesetas, como la meseta de Columbia en el noroeste de Estados Unidos.
Volcanes centrales: La mayor parte de la actividad volcánica de superficie se asocia con chimeneas circulares o con grupos de chimeneas que se abren en la corteza terrestre. Estas dan lugar a volcanes centrales de los que hay dos tipos básicos. El volcán cónico de pendientes acusadas que se construye a veces a partir de material sólido, cuyo tamaño va desde las cenizas y el lapilli hasta piedras y grandes rocas. La tefra se expulsa en una erupción y cae en la abertura externa de la chimenea. Casi todos los volcanes cónicos y casi cilíndricos suelen tener una chimenea central, pero esto no impide la expulsión de material volcánico por chimeneas secundarias en la ladera.
Volcanes escudo:. Se trata de una estructura muy grande de pendientes suaves. Suele ser el producto de cientos de coladas de lava basáltica muy fluida. Suelen tener varias chimeneas. Un ejemplo son los de las islas Hawaii, en el Pacífico norte.
Volcanes de superficie y tectónica de placas: Suelen asociarse con los límites destructivos que forman las placas tectónicas en los bordes por los que se acercan. Cuando dos placas convergen, el borde de una se hunde por debajo de la otra y avanza hacia el manto. Esto provoca un movimiento de subducción. En ocasiones los bordes convergentes de las placas están formados por litosfera oceánica, pero es más común que una esté formada por litosfera oceánica y la otra por corteza continental. Cuando la corteza oceánica se funde, el magma formado asciende a lo largo del plano de subducción y brota en forma de erupción en la corteza terrestre. Cuando el magma emite sobre la tierra da lugar a largas cadenas montañosas, entre las que destacan los Andes de América del Sur. Cuando las erupciones se producen en el mar, se forman largas cadenas de islas volcánicas dispuestas en forma de arco, como Japón o Filipinas.
El cráter por el que brota el material volcánico se suele mantener en forma de depresión como resultado del hundimiento de la lava en la chimenea eruptiva. A veces se hunde tan profundamente que el cono volcánico se derrumba y cae al interior de la chimenea, donde forma una depresión mayor llamada caldera. Las calderas pueden ser producto de explosiones violentas que `vuelan' el cono. Con el tiempo, las calderas de los volcanes dormidos o apagados pueden llenarse de agua y formar lagos.
Cualquier volcán puede mantenerse varios días en erupción, pero algunos tienden a asociarse con volcanes determinados. Este hecho se refleja en la clasificación de las erupciones volcánicas. Las erupciones fisurales y de escudo suelen clasificarse como islándicas y hawaianas, respectivamente. Las más explosivas se categorizan, en una escala de viscosidad creciente del magma, como estrombolianas, vulcanianas, vesuvianas, plinianas y peleanas. Las erupciones vesuvianas, plinianas y peleanas son las de carácter más paroxismal y en todas se expulsan grandes cantidades de cenizas y bloques de lava. Las peleanas se asocian con la emisión de nubes ardientes. Las erupciones más violentas se asocian con los bordes destructivos de las placas.
Puntos calientes
Casi toda la actividad volcánica se concentra a lo largo de los límites entre placas tectónicas, que son las líneas más débiles de la litosfera. Pero a veces se producen fenómenos volcánicos lejos de estos bordes por razones que unas veces están claras y otras no tanto. Hay volcanes en la proximidad del Rift Valley, en África oriental, por ejemplo el Kilimanjaro. Es comprensible, porque este valle corresponde a una línea de fractura por la que el continente se está rompiendo, y es de esperar que en el futuro aflore aún mayor cantidad de magma
Pero la presencia de 10.000 volcanes o más en el fondo del océano Pacífico ha desafiado durante mucho tiempo a cualquier explicación. Casi todas estas montañas marinas están extinguidas. La mayoría parecen repartidas al azar en el fondo del océano, pero otras forman cadenas lineales. Ahora se ha explicado su presencia lejos de los bordes de las placas. En el manto terrestre hay delgadas cámaras verticales de magma caliente que han surgido del núcleo y quedan fijas en su posición a medida que las placas tectónicas se desplazan. Estas cámaras crean puntos calientes en la litosfera situada sobre ellas, que es donde se produce la actividad volcánica. Estas regiones de vulcanismo se mueven junto con las placas.


tectonica deplacas

Es la teoría que explica la combinación de procesos tectónicos y magmaticos que producen el movimiento relativo de las diferentes placas litosfera.
La forma y blas caracteristicas de estas placas han cambiado con el transcurso del tiempo; en consecuencia tambien he variado la forma de los continentes .
La tectonica de placas implica el miviento de estas y la existencia de zonas de subduccion en funcion del mismo moviento. En estaszonas o sectores, si chocan dos placas, una se desliza por debajo de la otra en un proceso llamado subduccion y la placa subducida es empujada hacia el interior del manto terrestre. Por tanto surgen focos sismicos las placas subducidas son absorbidas por las profundidades terrestres, donde se funden.
magma es un fundido silicatado que contiene una cantidad bastante importante de gases con una fracción líquida, y posee también una sólida que está formada por partes de las rocas que aún no se han fundido, o cristales que se han solidificado.
La corteza y el manto terrestre, aún estando a altas temperaturas, se hayan en estado sólido, además solo hay magmas en algunas zonas de la corteza y del manto. Las rocas están formadas por minerales con su correspondiente punto de fusión. Por esto, una roca no funde a una temperatura determinada, sino que posee un intervalo de fusión, en el que parte de la roca está fundida y parte de ella está sólida. El punto que da comienzo a la fusión, es el punto de “solidus” y cuando la fusión es total, es el punto de “liqudus”. A la fusión parcial de una roca se denomina anatexia. Las rocas se funden:
Por aumento de temperatura en la zona. Como consecuencia de la fricción de dos placas litosféricas por la llegada de materiales calientes, o por una concentración de elementos radiactivos cuya desintegración genera calor.
Por disminución de la presión. El punto de fusión de un mineral aumenta con la presión y una reducción de presión en una zona puede hacer que la temperatura a la que se encuentre sea suficiente para fundir en las nuevas condiciones.
Por incorporación de agua. La presencia de agua disminuye el punto de fusión de las rocas.
Si la fusión parcial es muy reducida las gotitas de magma quedan aisladas en la roca. Un 5% es suficiente para que se establezcan la conexión del líquido magmático. Cuando se interconecta la menor densidad del magma y los gases que contiene facilitan su ascenso a través de las fracturas. Se produce la extracción del magma de la roca fuente. Al subir se acumula formando bolsas independientes que se llaman cámaras magmáticas
La mayor parte de la actividad magmática se localiza en los límites de las placas litosféricas. El 65% de los magmas no alcanzan la superficie quedándose en el interior, dónde se enfría, dando lugar a las rocas plutónicas. Y el 35% restante origina las rocas volcánicas. El 67% del vulcanismo está en las dorsales oceánicas, un 15% en las zonas de subducción; otra cantidad similar en el interior de las placas oceánicas; y en las zonas intraplaca continentales el vulcanismo representa el 2%.
La composición del magma está condicionada por el lugar en que se origina y por el porcentaje de roca que se funde. Según su composición se establecen:
Magma basáltico. Se origina por fusión parcial de peridotitas del manto. Éstas son rocas más densas que el basalto y están constituidas por olivino y piroxenos. La composición del magma depende del porcentaje de la peridotita. Si la fusión afecta al 30%, se forma un magma rico en sílice llamado toleítico, éstos magmas son característicos de las dorsales oceánicas. Y si la fusión se limita al 15% se forma un magma rico en sodio y potasio, llamado alcalino, éstos magmas son característicos de las zonas intraplaca oceánicas.
Magma andesítico. Se origina por la fusión parcial del basalto de la corteza oceánica que subduce. Ésta se produce por el calor de la fricción de las placas y por la presencia de agua. Éste magma es más rico en sílice y se forma en los bordes subductivos tipo arco insular.
Magma granítico. Se origina en las zonas de subducción a partir de la fusión de los materiales que constituyen la corteza continental inferior.

jueves, 20 de noviembre de 2008

ESTRUCTURA DE LE TIERRA

Geolagia: es la ciencia que estudia la composocion , estructurae historia de la Tierra. Para ello , se auxilia de otras rama: minerales, petrografia,estrategrafia,panteologia,y edafologia.
Aunque desde la antiguedad se encontraron datos y efectuaron descripciones de tipo geológico como las de heredoto o plinio, la geologia como ciencia nacio en siglo 18 y se considera como sus creadores al geologo aleman AbrahamG Warner y al escoses James Hutton.
Amediados del mismo siglo , la geologia experimento un gran desarrollo con el apoyo nuevos instrumentos técnicas y teorias, de entre ellos destacan el microscopio de polarizacion, de gran uso en el estudio de minerales y rocas, la teoria de los "trangresiones y regesiones" (1897). La estructura interna de la tierra ha sido motivo de intensas investigaciones . El hombre aprovecha las areas montañosas erosionadas para observar en forma directa las rocas , ha existido sobre la corteza terrestre, por ejemplo en el gran cañon del colorado, la erosion fluvial ha dejado al descubierto casi dos mil metris de historia geologica, tambien se han perforado pozos y minas que aveces llegan asta los 1okm de profundidad .las excavaciones realizadas en la corteza terrestre de la tierra han demostrado que a mrdida que se aumenta la profundidad la temperatuara sube , aunque a un ritmo diferente a s i que adoptadocomo promedio el gradiente termico.
El hombre a aplicado metyodos directose indirectos para estudiar la estrucrturade la tierra .Los directos son para sondear en busca de petroleo; los indirectosson los gravimetricos sismicos. A los estudios de metodos indirectos pertenecen los siguientes:

*Etudios gravimetricos:
permiten concer las irregularidades d la gravedad existen en las diferentes capas terrestres. Estas investigaciones se utilizan para lo cual se mide la variacion de la gravedad de le region y semarca sobre un diagrama donde se obtienen valores positivos o negativos de acuerdo con la mayor o menor densidad de las rocas.

*EStudios paleomagneticos:

miden los campos magneticos , lo cual permite conocer los movimientos horizontales de las bloques de la cortezaterreste. Son investigaciones relacionadas con fosiles palemagneticos, que se forman cuando la lava se dosifica.

*Ondas sismicas: es elindirecto mas eficaz pa ra estudiar la estructura de la tierra. las observaciones se realizan mediante las ondas sismicas su pasipor la masa terrestre asi se ha descubierto que esta posee tres importantes capas super puestas: corteza, manto , y corteza terrestre.0